CAM-SE: CAM with HOMME's Spectral Element Dynamical Core

Mark Taylor Sandia National Labs

mataylo@sandia.gov

SEOM: Iskandarani, Haidvogel

SEAM: Fournier, Taylor, Tribbia, Wang

HOMME: Dennis, Edwards, Erath, Evans, Guba, Levy, Loft, Nair, Norman, St-

Cyr, Taylor, Thomas

DCMIP Summer School, July 30-Aug 10, Boulder

The Community Earth System Model (CESM)

- CAM is the atmosphere component model for the CESM
- CESM is an IPCC-class model developed by NCAR, National Labs and Universities
- Atmosphere, Land, Ocean and Sea ice component models
- Science & policy applications:
 - Seasonal and interannual variability in the climate
 - Explore the history of Earth's climate
 - Estimate future of environment for policy formulation
 - Contribute to assessments

CAM Dycore Options

CAM-EUL

- Used in IPCC AR4
- Global spectral model
- Eulerian dynamics, Semi-Lagrangian tracer advection

CAM-SLD

- Global spectral model
- Semi-Lagrangian tracer and momentum advection

CAM-FV

- Current default core, used in IPCC AR5
- Lin-Rood lat/lon FV

CAM-SE

- New option included since CAM 5.0 release
- Spectral element dynamical core from HOMME

HOMME

- ■HOMME: High-Order Method Modeling Environment
 - Runs in CAM or stand-alone
 - Quadrilateral grids (cubed-sphere or conforming unstructured)
 - CG (continuous Galerkin, aka spectral elements) and DG (discontinuous Galerkin) methods
 - CSLAM advection

Design Philosophy (original)

- Scalable, drop-in replacement for CAM's global spectral method
- Spectral element horizontal discretization replaces spherical harmonic expansion
- •All other aspects followed CAM-EUL
 - log(ps) prognostic variable (no mass or energy conservation)
 - S&B MWR 1981 vertical coordinate (Lorenz staggering, eta coordinate)
 - Run at 8'th order accuracy (p=7 element, polynomial basis functions (like spherical harmonics, which are polynomials in R³ restricted to the sphere)
 - Hyper-viscosity applied to momentum and temperature ($nu \sim dx^3.2$)
 - Top-of-model (3 levels) regular viscosity, fixed coefficient

- Support quasi-uniform and variable resolution grids on parallel computers
 - Finite Element Method (designed from inception for these types of grids)
 - Derivatives are computed locally within each element independent of neighbors/connectivity
 - Galerkin formulation allows for mathematical proofs of convergence rates on highly unstructured grids
 - Galerkin formulation leads to natural cache friendly design

- Use explicit time integration
 - Require diagonal mass matrix: use CG/"spectral elements" or DG
- Hyper-viscosity for physical diffusion
 - Simple and effective "turbulence" model
 - CG: Efficient doubly-integrated-by-parts formulation
 - DG: more difficult (still a research topic) but can use flux limiters
- Diagonal mass matrix CG: requires quadrilateral elements (not triangles)

- Hyper-viscosity damps grid scale waves (2dx-6dx)
 - Not afraid of "erratic" grid scale waves (Melvin et. al QJRMS 2012)
 - Q^p-Q^p element with all variables in the same functional space (would require FE stabilization if not using hyper-viscosity)
 - Similar to high-order A-grid, with waves $\lambda > 2\pi h/(2p+1)$ very well resolved (Ainsworth & Wajid SINUM 2009)

- Q^p-Q^p element is *mimetic*
 - Discretization preserves adjoint properties of div, grad and curl operators
 - Discrete versions (element level) of Stokes and Divergence theorem
 - Conservation: exact local conservation: mass, potential temperature,
 2D PV.
 - Conservation (exact with exact time integration) total energy.

- Q⁷-Q⁷ 8'th order accurate element
 - In test cases, outperforms lower order elements with same total number of degrees of freedom, even for problems like advecting the slotted cylinder
 - 8th order convergence obtainable (but with unrealistic timesteps and diffusion coefficients)
 - Small timestep because of Gauss-Lobatto quadrature spacing
- Q¹-Q¹ 2nd order accurate element
 - Quadrature used to obtain a diagonal mass matrix is too inaccurate
- Q³-Q³ 4th order accurate element
 - Compromise typically used in CAM

Tracer Advection Example

- Q³-Q³ element, unlimited, is 4'th order accurate, oscillatory
- Mimetic spectral elements and DG methods can use elementlocal, monotone reconstructions (2'nd order accurate)
- Current work in HOMME: CSLAM semi-Lagrangian advection option for tracers.

Nari & Lauritzen Deformational Flow Test Case for the sphere

